ABSTRACT CONTENTS:

Oral presentations (O + number)
- O001 O004 FP 1 Acute Leukemia 1
- O005 O006 FP 2 Medulloblastoma
- O009 O012 FP 3 Late Effects 1
- O013 O017 FP 4 Ewing’s Sarcoma
- O018 O023 FP 5 Glioma/Spinal Tumors
- O024 O029 FP 6 Late Effects 2
- O030 O035 N 1 Planning Care: Perspectives of Parents, Patients and Professionals
- O036 O041 FP 7 Osteosarcoma
- O042 O047 FP 8 New Drugs and Experimental Therapeutics
- O048 O053 FP 9 Psychosocial 1
- O054 O059 RO 1 CNS/Ewing’s Sarcoma
- O060 O065 N 2 International and Multicultural Collaboration in Paediatric Oncology Nursing
- O066 O071 SIOP SIOP award session
- O072 O075 N 3 Meeting the Needs of Teenagers and Young People
- O076 O079 FP 10 Acute Leukemia 2
- O080 O083 FP 11 CNS Miscellaneous
- O084 O087 FP 12 Hepatic Tumors
- O088 O091 RO 2 Radiation Miscellaneous
- O092 O095 N 4 Promoting Safe Care in Cancer Treatments
- O096 O101 FP 13 Acute Lymphoblastic Leukemia
- O102 O106 FP 14 Clinical Advances in Neuroblastoma
- O107 O112 FP 15 Adolescents and Young Adults
- O113 O118 N 5 Challenges and Collaboration in Care and Aftercare
- O119 O124 FP 16 Leukemia and Lymphoma
- O125 O130 FP 17 Neuroblastoma. From translational research to personalised medicine.
- O131 O136 FP 18 Epidemiology
- O137 O142 FP 19 Clinical Aspects of Renal Tumours
- O143 O148 FP 20 Germ Cell Tumors
- O149 O154 FP 21 Psychosocial 2
- O155 O156 N 7 Emerging Directions in Planning Care
- O157 O162 FP 22 Soft Tissue Sarcomas
- O163 O168 FP 23 Rare Tumors: Retinoblastoma and more
- O169 O174 FP 24 Supportive Care

IPSO Oral presentations (IPSO + number)
- IPSO001 IPSO002 IPSO 1 Renal Tumors
- IPSO003 IPSO006 IPSO 2 Soft Tissue Tumors
- IPSO007 IPSO012 IPSO 3 Surgical Techniques & Bone Tumors
- IPSO013 IPSO016 IPSO 5 PBCT/PSO Session
- IPSO017 IPSO021 IPSO 6 Adrenal Tumors
- IPSO022 IPSO026 IPSO 7 Germinal, Endocrine Tumors and Rare Tumors

ICCCPO Oral presentations (ICCCPO + number)
- ICCCP001 ICCCP0015 Parents and Survivors

© 2011 Wiley-Liss, Inc.
DOI 10.1002/pbc.23299
Published online in Wiley Online Library (wileyonlinelibrary.com.).
<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA001</td>
<td>PA026</td>
<td>Acute Lymphoblastic Leukaemia</td>
</tr>
<tr>
<td>PB001</td>
<td>PB024</td>
<td>Myeloid Leukemias</td>
</tr>
<tr>
<td>PC001</td>
<td>PC015</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>PD001</td>
<td>PD016</td>
<td>Bone Tumors</td>
</tr>
<tr>
<td>PH001</td>
<td>PH012</td>
<td>Biology of Neuroblastoma, Hepatoblastoma and Wilms Tumour</td>
</tr>
<tr>
<td>PI001</td>
<td>PI023</td>
<td>Diagnostics and Therapy of Neuroblastoma, Retinoblastoma, Renal Tumors and Germ Cell Tumors</td>
</tr>
<tr>
<td>PJ001</td>
<td>PJ020</td>
<td>Soft Tissue Sarcomas</td>
</tr>
<tr>
<td>PK001</td>
<td>PK019</td>
<td>Neuroblastoma and Other Solid Tumors</td>
</tr>
<tr>
<td>PL001</td>
<td>PL021</td>
<td>Rare Tumors and Histiocytosis</td>
</tr>
<tr>
<td>PM001</td>
<td>PM022</td>
<td>Brain Tumors - Molecular Genetics/Translational Research Side Effects</td>
</tr>
<tr>
<td>PM023</td>
<td>PM047</td>
<td>Brain Tumors - Clinical Approaches</td>
</tr>
<tr>
<td>PN001</td>
<td>PN018</td>
<td>Stem Cell Transplantation</td>
</tr>
<tr>
<td>PS001</td>
<td>PS027</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>PQ001</td>
<td>PQ024</td>
<td>Late Effects</td>
</tr>
<tr>
<td>PR001</td>
<td>PR014</td>
<td>Supportive Care - Nutrition</td>
</tr>
<tr>
<td>PR015</td>
<td>PR050</td>
<td>Supportive Care - AYA/Health Care Services</td>
</tr>
<tr>
<td>PR051</td>
<td>PR070</td>
<td>Supportive Care - Infectious Diseases</td>
</tr>
<tr>
<td>PS001</td>
<td>PS012</td>
<td>Psychosocial 1</td>
</tr>
<tr>
<td>PS013</td>
<td>PS033</td>
<td>Psychosocial 2</td>
</tr>
<tr>
<td>PU001</td>
<td>PU028</td>
<td>Nursing</td>
</tr>
<tr>
<td>PV001</td>
<td>PV001</td>
<td>ICCCPO Parents & Survivors</td>
</tr>
<tr>
<td>PW001</td>
<td>PW015</td>
<td>IPSO</td>
</tr>
<tr>
<td>PX001</td>
<td>PX012</td>
<td>PROS</td>
</tr>
</tbody>
</table>

Publications (Pub + number)

Pub001 Pub0071 Publication Only
AUCKLAND, NEW ZEALAND, 28TH–30TH OCTOBER, 2011
SIOP ABSTRACTS

ORAL ABSTRACTS

O001

COST-EFFECTIVENESS OF CHEMOTHERAPEUTIC TREATMENT OF CHILDHOOD ACUTE LYMPHOBlastic LEUKEmIA: THE INFLUENCE OF NEW MEDICATION AND DIAGNOSTIC TECHNOLOGY

Raphaelle van Litsenburg1, Carin Uyl-de Groot2, Hein Rau1, Gertjan Kaspers1, Reinoud Gemke1

1VU University Medical Center, Pediatrica, Amsterdam, Netherlands
2Erasmus Medical Center - University, Department of Public Health, Rotterdam, Netherlands

Purpose: Survival for childhood acute lymphoblastic leukemia (ALL) has reached 80–90%. Future improvement in treatment success will involve new technologies and medication, adding to limited resources and financial constraints. Therefore a retrospective cost-effectiveness analysis of childhood ALL treatment with chemotherapy only according to the two most recent Dutch Childhood Oncology Group treatment protocols was performed. The most recent protocol ALL10 included more expensive medication (pegasparaginase) and implemented a new diagnostic technique (minimal residual disease levels) as compared to the ALL9 version.

Method: Fifty children from a single center cohort were included. All direct medical costs made during treatment, including those in satellite hospitals, were determined. Costs per life year saved (LYS) were calculated. The incremental cost-effectiveness ratio (ICER) of the latest treatment protocol was determined. LYS were calculated based on national 5-year event free survival.

Results: Mean total costs were €5,821 and €121,000 in ALL9 and ALL10 (p < 0.001), respectively. Hospital admissions (57%) and medication (11–17%) were important drivers of overall costs, and were higher in the ALL10 protocol. Mean LYS were higher for ALL10 (66.0 versus 60.2). Costs per LYS were higher for ALL10 (€1,967) compared to ALL9 (€1,453, p = 0.007). The ICER for treatment according to the ALL10 protocol was €5,085.

Conclusion: Treatment of childhood ALL with chemotherapy only is well within the accepted range of cost-effectiveness. The use of new technology and more expensive medication in the latest protocol lead to higher costs but also more LYS. In future (ALL) treatment protocols, costs in relation to effects should be taken into account in order to establish more cost-effective disease management without jeopardizing survival and quality of life.

O002

THE VALUE OF MONITORING FOR MRD AT LATE TIMEPOINTS IN PAEDIATRIC ALL TREATMENT

Rosemary Sutton1, Tamara Law1, Nicola C Venn1, Rachel Shi1, Mawar Karsa1, Anita Y Bahar1, Anne Mitchell1, Ram Suppiah1, Frank Alvaro2, Heather Tapp3, Michelle Haber3, Murray Norris3, Luciano Dalla Pozza3, Glenn M Marshall4

1Children’s Cancer Institute Australia, Molecular Diagnostics, Randwick, Australia
2Children’s Cancer Institute Australia, Molecular Diagnostics, Randwick, Australia
3Wellington Hospital, Oncology, Wellington, New Zealand
4Mater Children’s Hospital, Oncology, Brisbane, Australia

Purpose: Monitoring for minimal residual disease (MRD) at late time points in childhood ALL treatment represents the molecular detection of relapse which precedes clinical presentation of relapse by up to 6 months. This results in ANZCHOG Study 8, an MRD intervention clinical trial using a BFM protocol, confirm our previous findings on the prognostic value of MRD testing at late time points in both ANZCCSG Study VI (Marshall et al JCO 2003) and ANZCCSG Study VII (Sutton et al BJH 2009).

Method: MRD was measured in DNA from remission bone marrow samples by real-time quantitative PCR according to EuroMRD guidelines in a cohort of 400 ANZCHOG Study 8 patients.

Results: MRD negativity and MRD < 1 × 10−4 at 12 and 24 month time points in therapy were all highly prognostic of patient relapse-free survival (Log rank Mantel Cox test P < 0.0001). MRD testing after 12 months of therapy predicted all 8 of the very early bone marrow relapses (defined as occurring before 18 months) and MRD results at 24 months predicted most (7/10) of the early off therapy relapses (24–30 months post diagnosis). However, MRD testing of bone marrow samples failed to predict isolated extramedullary relapses and missed many late bone marrow relapses (> 30 months post diagnosis and > 6 months after the collection of the last sample tested for MRD). Almost all (95%) of patients who had initially achieved MRD negativity in the bone marrow collected at either 3, 5 months or 12 months.

Conclusion: In contrast to MRD levels during induction which reflect the kinetics of disease clearance, we conclude that the detection of MRD levels (> 1 × 10−4) at 12 and 24 months represents the molecular detection of relapse which precedes clinical presentation of relapse by up to 6 months. These results in ANZCHOG Study 8, an MRD intervention clinical trial using a BFM protocol, confirm our previous findings on the prognostic value of MRD testing at late time points in both ANZCCSG Study VI (Marshall et al JCO 2003) and ANZCCSG Study VII (Sutton et al BJH 2009).

O003

ABSOLUTE LYMPHOCYTE COUNTS REFINE MINIMAL RESIDUAL DISEASE-BASED RISK STRATIFICATION IN CHILDHOOD ACUTE LYMPHOBlastic LEUKEmIA

Judith Marzolin1, Karen Rabia2, M. Monica Gramatges2, Michael Borowitz3, Shana Palla4, Xiaodong Shi5, Patrick Zwiedler-McKay4

1Baylor College of Medicine, Department of Pediatrics, Houston, TX
2Baylor College of Medicine, Pediatrics, Houston, TX
3Johns Hopkins University, Pathology, Baltimore, MD
4M. D. Anderson Cancer Center, Pediatrics, Houston, TX
5Capital University Hospital, Pediatric Oncology, Beijing, China

Purpose: Low absolute lymphocyte counts (ALC) have been found to predict poor outcome in a variety of malignancies including pediatric acute lymphoblastic Leukemia (ALL). Risk classification for pediatric ALL now relies heavily on measurement of minimal residual disease (MRD), an expensive test with limited availability in some resource-limited countries. Here we investigate the potential role for using absolute lymphocyte counts to refine risk stratification in settings where minimal residual disease (MRD) is unavailable.

Method: We reviewed 171 cases of pediatric acute lymphoblastic Leukemia for ALL during induction, age at diagnosis, cytogenetics, initial white blood cell count (WBC), and MRD status at Day 29 of Induction.

Results: We found ALC at Induction Day 29 to be an independent, clinically significant predictor of relapse-free and overall survival. Patients with Day 29 ALC < 1500 cell/μL had a
COMPLIANCE TO TREATMENT IN CHILDHOOD ACUTE LYMPHOBLASTIC LEUKEMIA

Silvia Dumitraș1, Ingrith Miron2
1Emergency Paediatric Hospital Sf. Maria, Hemato-Oncology, Iasi, Romania
2Emergency Paediatric Hospital Sf. Maria, Hemato-oncology, Iasi, Romania

Purpose: Identifying the factors that influence compliance to treatment in pediatric patients with acute lymphoblastic leukemia (ALL).

Method: The study was carried out in Children’s Emergency Hospital Sf. Mary Iasi, Oncology-Department, on 201 children with ALL, aged between 0-18 years. Five parameters were analyzed (sex, age, geographical region, relapse, death) to assess compliance to treatment. The methods used were descriptive and inferential statistical analysis. Compliance to treatment was defined as presentation to hospital for treatment according to the sequence protocol, in pediatric patients given that tutors were informed about the benefits of the treatment’s rigor. From the lot were excluded patients who didn’t meet therapeutic discipline reasons other than compliance (e.g., continue treatment at another hospital).

Results: For the 184 patients who received Leukemia treatment (being excluded patients who refused treatment and those who died before initiating treatment) it was found that 20.1% of them were not compliant to treatment, while 79.9% met the therapeutic discipline. There were no statistically significant correlations between compliance to treatment and demographic parameters, namely sex (r = 0.036, p = 0.632), age (r = 0.054, p = 0.463) and geographical region (r = 0.102, p = 0.368). Non-compliant patients tended to relapse after unfavorable evolution (sample 164 patients with relapse; r = -0.328, p = 0.005) and death (sample 184 patients who died; r = -0.331, p = 0.005) more than patients compliant to treatment.

Conclusion: In the absence of treatment, the evolution of ALL is fatal within a constant alternating days, weeks or months. Compliance to treatment is an essential element for the favorable evolution of leukemic patients. Since the objective demographic factors do not influence compliance to treatment, it is necessary to identify individual factors, namely the psycho-soo-cultural and religious, which influence parents' decisions on further chemotherapy leukemia patients.

TOXICITY OF HIGH-DOSE METHOTREXATE THERAPY IN PATIENTS OF ACUTE LYMPHOBLASTIC LEUKEMIA WITH DOWN SYNDROME

Yuki Gemma1, Fumio Bethso1, Hiroshi Yoshino1, Hiroaki Ohnishi2, Rika Yoneyama3, Naoko Chiba4
1Kyoto University School of Medicine, Department of Pediatrics, Tokyo, Japan
2Kyoto University School of Medicine, Department of Laboratory Medicine, Tokyo, Japan
3Kyoto University School of Medicine, Department of Clinical Laboratory, Tokyo, Japan

Purpose: In order to examine the reasons of inferiority of treatment results of acute lymphoblastic leukemia (ALL) in patients with Down syndrome (DS), we compared the plasma concentration of methotrexate (MTX) and severity of toxicity in ALL patients with and without DS.

Method: Consecutive patients of ALL with DS (4 cases) and without DS (16 cases) were treated at our Department with TCCSG Protocols 15 (P15) and 16 (P16) which contain 3 courses of high-dose MTX for prophylaxis of central nervous system Leukemia (CNS phase). The plasma MTX concentration was measured using Enam® Methotrexate Assay and toxicity was graded according to National Cancer Institute Common Toxicity Criteria.

Results: The first course of high-dose MTX in P15 consists of MTX 3 g/m2 over 12 hours (Group 2) and other courses of P15 and all courses of P16 consist of MTX 3 g/m2 over 24 hours (Group 3). We reduced MTX dosage to 2 g/m2 over 24 hours for DS patients (Group 1). Mean plasma concentrations at 48 hours after infusion for the first course were 0.50 ± 0.13 μmol/L for Group 1, 0.33 ± 0.15μmol/L for Group 2 and 0.54 ± 0.32μmol/L for Group 3. Toxicity greater than grade 3 was only oral mucositis which was seen only in Group 1.

Conclusion: The length of time required to complete CNS phase was longer for Group 1 (43.5 ± 9.2 days) than for other groups (28.6 ± 4.6 days for Group 2 and 31.4 ± 4.3 days for Group 3) (P < 0.015 & 0.013) because of delayed recovery from gastrointestinal symptoms. All patients with DS are alive and disease-free for 2 to 9 years.
Purpose: The aim of this study was to evaluate whether the levels of cerebrospinal fluid (CSF) osteopontin is related to central nervous system (CNS) involvement and to determine whether the elevated CSF osteopontin levels are the early decisive marker of CNS involvement before the beginning of the symptoms and signs in children with acute Leukemia.

Method: The study's sample was consisted with the patients that were diagnosed as acute Leukemia at our hospital between March 2008 and June 2010. The patients were divided into two groups: children with CNS involvement and children without CNS at diagnosis and follow-up. The CNS involvement was obtained in 3/13 patients at diagnosis and in 10/13 patients at follow-up. Total 6 CSF samples (3/6 at diagnosis and 3/6 at remission period) of the patients with CNS involvement were taken for analysis. The CSF samples of the patients with CNS involvement at follow-up were taken at diagnosis, before relapse, at relapse and remission.

Results: The mean levels of CSF osteopontin of 62 patients with acute Leukemia at diagnosis and control group were 32.76 ± 49.22 ng/mL and 14.93 ± 8.64, respectively (p = 0.498). The mean levels of CSF osteopontin of the patients with CNS involvement and patients without CNS at diagnosis were 27.68 ± 32.73 ng/mL and 53.48 ± 92.91 ng/mL, respectively (p = 0.502). The mean CSF osteopontin level of the patients with CNS involvement during follow-up at the time of relapse was significantly higher than the patients without CNS at diagnosis. (127.4 ± 42.52 vs 27.68 ± 32.73 ng/mL) (p < 0.001). The CSF osteopontin levels between the periods of diagnosis-before relapse-relapse-remission were significantly different in patients with CNS involvement.

Conclusion: It is shown that high CSF osteopontin levels were associated with the evidence of CNS involvement for childhood acute Leukemia patients, and more importantly, the increases in CSF osteopontin levels was associated with early decision of CNS involvement in this study.

PA021

OSTEOPONTIN INCREASES IN THE CEREBROSPINAL FLUID PRIOR TO MENINGEAL INVOLVEMENT IN CHILDREN WITH ACUTE LEUKEMIA

Sonay Vencesv Özdemir, Güriesşahan, Ceyhun Buksurt, Aye Ceyda Ören, Eda Balkaya, Ulya Ertėm

Dr. Sani Ulus Children Hospital, Pediatric Oncology, Ankara, Turkey

Purpose: The aim of this study was to evaluate whether the levels of cerebrospinal fluid (CSF) osteopontin is related to central nervous system (CNS) involvement and to determine whether the elevated CSF osteopontin levels are the early decisive marker of CNS involvement before the beginning of the symptoms and signs in children with acute Leukemia.

Method: The study’s sample was consisted with the patients that were diagnosed as acute Leukemia at our hospital between March 2008 and June 2010. The patients were divided into two groups: children with CNS involvement and children without CNS at diagnosis and follow-up. The CNS involvement was obtained in 3/13 patients at diagnosis and in 10/13 patients at follow-up. Total 6 CSF samples (3/6 at diagnosis and 3/6 at remission period) of the patients with CNS involvement were taken. The CSF samples of the patients with CNS involvement at follow-up were taken at diagnosis, before relapse, at relapse and remission.

Results: The mean levels of CSF osteopontin of 62 patients with acute Leukemia at diagnosis and control group were 32.76 ± 49.22 ng/mL and 14.93 ± 8.64, respectively (p = 0.498). The mean levels of CSF osteopontin of the patients with CNS involvement and patients without CNS at diagnosis were 27.68 ± 32.73 ng/mL and 53.48 ± 92.91 ng/mL, respectively (p = 0.502). The mean CSF osteopontin level of the patients with CNS involvement during follow-up at the time of relapse was significantly higher than the patients without CNS at diagnosis. (127.4 ± 42.52 vs 27.68 ± 32.73 ng/mL) (p < 0.001). The CSF osteopontin levels between the periods of diagnosis-before relapse-relapse-remission were significantly different in patients with CNS involvement.

Conclusion: It is shown that high CSF osteopontin levels were associated with the evidence of CNS involvement for childhood acute Leukemia patients, and more importantly, the increases in CSF osteopontin levels was associated with early decision of CNS involvement in this study.
IMPROVING THE QUALITY OF THE EXPERIENCE: 3D PHOTOGRAPHY IN THE PRODUCTION OF HEAD & NECK STABILISATION DEVICES FOR PAEDIATRIC RADIATION ONCOLOGY PATIENTS

Katie Davidson1, David Willis1, Julia McAlpine1, Janelle Hardtman1, Maria Portillo1, Brigid Moran1, Lloyd Ellis2, Rod Lawlor2, Jane Williamson3

1Peter MacCallum Cancer Centre, Radiation Therapy Services, East Melbourne, Australia
2Royal Children’s Hospital, Educational Resource Centre, Parkville, Australia
3Royal Children’s Hospital, Paediatric Integrated Cancer Service, Parkville, Australia

Purpose: The production of radiation therapy (RT) stabilisation devices can be extremely confronting for children, particularly when head immobilisation is required. At the Peter MacCallum Cancer Centre either thermoplastic or PETG masks are used. The processes involved in the manufacture of a stabilisation device occur on the child’s first visit to the RT centre and may be challenging and frightening. Thus, a number of children often require general anaesthesia to undergo these processes. In 2009, a multidisciplinary team commenced trials utilising 3D photography linked to computerised prosthetic technology to produce a “no touch” method of producing stabilisation masks for children. This poster presents our ongoing research into improving the use of this technology.

Method: A 3DMDcranial™ digital photography system is used to acquire a three-dimensional image of the child’s head, neck and upper torso. An Omega3D™ computer-aided design prosthetic carver uses the 3D photographic dataset to produce a foam bust of the child. The mask is constructed on the bust prior to the child’s appointment for CT simulation and the mask fit is assessed during planning and treatment procedures.

Results: At time of abstract, seven children (aged 4 to 8) had had stabilisation masks produced using this method. None have required GA for simulation or treatment, negating 160 GA procedures. Verification imaging indicates that masks produced by this method are equivalent to traditional masks. Two masks have required considerable modification at simulation to improve patient comfort.

Conclusion: The technique allows RT mask moulding without contact between the child and construction materials. Alterations in our mask manufacture techniques have lead to a reduction in the use of general anaesthesia and concomitant savings in time and expense, increased efficiency and an improved quality of experience for the children.

TREATMENT OF CHILDREN WITH PRIMARY METASTATIC RHABDOMYOSARCOMA

Anna Shvarova, Dennis Hestanov, Mazim Rykov, Rano Ravshanova, Nadezhda Ivanova

Purpose: To improve the results of the treatment of primary metastatic rhabdomyosarcoma (RMS) for children and adolescents.

Methods: 38 children and adolescents at the mean age of 8.4 ± 3.8 years (20 males, 18 females) with rhabdomyosarcoma were treated between 1990 and 2007 years. Histologically, 9 patients had the undifferentiated RMS, 12 had the embryonal rhabdomyosarcoma and 17 - alveolar rhabdomyosarcoma. The most often affected area was the area of the lower extremity - 15 cases. According to the staging systems adopted, the size > 5 cm (T2B) was reported in 33 cases. Eleven patients had regional nodal involvement, and 27 had distant metastases. The analyzable group of patients was disintegrated to the group of historical control (HCG) (23 patients) and the investigation group (IG) (15 patients). The general scheme of the treatment for patients of IG included: 8 courses of chemotherapy (used ifosfamide or cyclophosphamide, etoposide, carboplatin); the harvesting and preservation of the stem cells after the stimulation of the haemophoesis by G-CSF; the stage of the local control of the tumor consisting of the surgical ablation of the primary lesion and the radiotherapy of the initial tumor and metastasis left after the induction. Patients, who were included in HCG, received standard CT.

Results: The partial effect was registered by most of the patients of IG - 80%, vs HCG - 26.1%. We observed progression of the disease during indutive CT in 21.7% of cases in HCG. In our research we have analyzed the 3-year disease free survival (DFS). Thus, 3-year DFS was 21.8 ± 11.1% in IG, vs 4.9 ± 4.8% in HCG.

Conclusion: less than 20% of STS patients will survive 5 years. Complete resection, RT and aggressive systemic chemotherapy are the most predictive factors for prolonged survival.
PEDIATRIC ONCOLOGY IN CENTRAL ASIA; WHAT THE WEB SAYS
Abbas Ali Pour Feizi1, Faramak Goreshi Zade2
1Tabriz Medical Sciences University, Haematology/Oncology Research Centre, Tabriz, East Azerbaijan, Islamic Republic of
2Tabriz Medical Sciences University, Mother & Child health Centre, Tabriz, Iran, Islamic Republic of

Purpose: Central Asian countries have faced several economic and health challenges, in the post Soviet era. Lack of some infra structures has caused obstacles on child health development including pediatric oncology. SOIAP Asia has focused on pediatric oncology in this area and a subcommittee has been established to shed light in this field.

Method: To begin, we searched web (Google, Pub med, and Integrated Digital Library) extensively with the following key words: Pediatric Oncology, Oncology, Malignancy, Cancer, children, leukemias, tumor, Central Asia, and names of the countries.

Results: We found 32 articles in this regard. Most of those published in the Soviet era, and shortly after, were in Russian, with or without short abstracts in English. Recent articles were dealing mainly with adult oncology. We found 8 abstracts in the field of pediatric oncology. Kazakhstan: Eight out of 12 articles were on adult cancers. There were two epidemiological study on the risk of cancer (1) and thyroid disease (1) in children living in the vicinity of Semipalatinink, a region where Nuclear tests has been carried out, both on air and underground, and an Atom Lake has been created. There were 2 abstracts on Pediatric oncology. Kyrgyzstan: Six out of 7 abstracts were on adult cancers and food contamination with chemo-oncogens. There was one abstract one adolescent tumours.

Conclusion: Kimura disease is a chronic inflammatory disorder of unknown etiology that most commonly develops as painless, unilateral cervical Lymphadenopathy or subcutaneous masses in head and neck region. It is reported to be associated with nephritic disease in 15-19% of cases. There are not many case reports of Kimura disease in children from India. The basis of association is not well understood probably an underlying T cell and related cytokine defect.

Method: A 13-year-old male child presented to pediatric nephrologist with complaints of swelling in left sub mandibular and post auricular region for 2 months. Patient had been a known case of nephritic syndrome for past 2 ½ years. Prednisolone was stopped 1 ½ month back before the appearance of this swelling. Patient was given antibiotics but no response was observed.

Results: Child was referred to us from nephrology clinic. Lymph node biopsy was done which showed marked widening of Para cortical region with follicles in between. The paraarcocytic region showed numerous eosinophils with occasional eosinophilic micro abscesses. Few germinal centres show proteinaceous material. Absolute eosinophilic count was 4400 and IgE levels were 3782. The case was diagnosed as Kimura disease. Child was put on oral dexamethasone for 4 weeks followed by tapering over 2 weeks then 5-day pulse of dexamethasone every month for 6 months was given. Child had recurrence of swelling after 4 months of stopping steroid. Was again put on 5-day pulse of dexamethasone every month and doing fine till date.

Conclusion: Kimura disease should be considered in differential diagnosis of cervical Lymphadenopathy.

EDUCATION FOR CHILDREN WITH CANCER IN JAKARTA: A DEVELOPING COUNTRY
Pinta Manullang-Panggabean1, Ira Soelisnityo2
1Indonesian Care for Cancer Kids Foundation, Jakarta, Indonesia
2Indonesian Care for Cancer Kids Foundation, General, Jakarta, Indonesia

Purpose: Every child who suffered from cancer should have the right to have education and the right to play as in and out-patient. The average time frame for a cancer treatment is between 3 months to 2 years, continued thereafter with medication (maintenance) over 5 months to 2 years. This lengthy process no doubt disturbs the studies of the young patient who has to juggle the time between treatment and school - not to mention having to keep up with lessons missed.

Method: YKAKI is established in November 2006 by parents whom had experienced to get treatment for their children overseas, with vision that every Indonesian child whom had cancer have the right to have the best treatment and care and also the right for education and play during even they are in the hospital. YKAKI’s main program is provision of education especially for the needy. Start from 2007 YKAKI started to provide education for cancer patients and other children with chronic diseases during their treatment in hospitals. Firstly with home-schooling methodology and later switched to normal schooling methodology.

Results: YKAKI presently have managed to give free education to 5 hospital-schools by government general referral hospitals and 2 shelters, with the support of 15 full time paid tutors.

Conclusion: By becoming member of ICCCP, with a direct access of information and sharing with other parents organizations from developed countries we could develop an innovation type of schooling especially for the future of Indonesian children.

KIMURA DISEASE AS A CAUSE OF PERSISTENT LYMPHADENOPATHY
Vikas Dix1, Praveen Kumar Pruthi2, Satya Prakash Yadav3, Sunita Bhattia4, Madaan Anjan3, Anupam Sachdevaa
1Sr Ganga Ram Hospital, Department of Pediatric Hemaotology, SGRH, New Delhi, India
2Sr Ganga Ram Hospital, Pediatric Nephrology, Delhi, India
3Sr Ganga Ram Hospital, Pediatric Hematology Oncology & BMT Unit, Delhi, India
4Sr Ganga Ram Hospital, Histopathology, Delhi, India

Purpose: Kimura disease is a chronic inflammatory disorder of unknown etiology that most commonly develops as painless, unilateral cervical Lymphadenopathy or subcutaneous masses in head and neck region. It is reported to be associated with nephritic disease in 15-19% of cases. There are not many case reports of Kimura disease in children from India. The basis of association is not well understood probably an underlying T cell and related cytokine defect.

Method: A 13-year-old male child presented to pediatric nephrologist with complaints of swelling in left sub mandibular and post auricular region for 2 months. Patient had been a known case of nephritic syndrome for past 2 ½ years. Prednisolone was stopped 1 ½ month back before the appearance of this swelling. Patient was given antibiotics but no response was observed.

Results: Child was referred to us from nephrology clinic. Lymph node biopsy was done which showed marked widening of Para cortical region with follicles in between. The paraarcocytic region showed numerous eosinophils with occasional eosinophilic micro abscesses. Few germinal centres show proteinaceous material. Absolute eosinophilic count was 4400 and IgE levels were 3782. The case was diagnosed as Kimura disease. Child was put on oral dexamethasone for 4 weeks followed by tapering over 2 weeks then 5-day pulse of dexamethasone every month for 6 months was given. Child had recurrence of swelling after 4 months of stopping steroid. Was again put on 5-day pulse of dexamethasone every month and doing fine till date.

Conclusion: Kimura disease should be considered in differential diagnosis of cervical Lymphadenopathy.
884 SIOP ABSTRACTS

Export of all authors and co-authors with abstract index

<table>
<thead>
<tr>
<th>A</th>
<th>A R N, PR041</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERTS, I, O163*</td>
<td></td>
</tr>
<tr>
<td>AL-FAWAZ, J, PK006*, PK007*</td>
<td></td>
</tr>
<tr>
<td>ALLARD, M, PM011</td>
<td></td>
</tr>
<tr>
<td>AYADI, M, PR004</td>
<td></td>
</tr>
<tr>
<td>Aabideen, K, PM037*, PQ012*</td>
<td></td>
</tr>
<tr>
<td>Abdelbers, A, PB016</td>
<td></td>
</tr>
<tr>
<td>Abbas, S, O121</td>
<td></td>
</tr>
<tr>
<td>Abbasoglu, A, PR007*</td>
<td></td>
</tr>
<tr>
<td>Abid elmoniem, A, O046*</td>
<td></td>
</tr>
<tr>
<td>Abdulwahab, R, PM009, PK023</td>
<td></td>
</tr>
<tr>
<td>Abubeker, A, PB047</td>
<td></td>
</tr>
<tr>
<td>Ahish, S, PA012</td>
<td></td>
</tr>
<tr>
<td>Aboal-Enein, F, PA001</td>
<td></td>
</tr>
<tr>
<td>Aburamoza, L, O034*, O064*</td>
<td></td>
</tr>
<tr>
<td>Aburat, M, PB026</td>
<td></td>
</tr>
<tr>
<td>Abdoush, B, PB045*</td>
<td></td>
</tr>
<tr>
<td>Abraia, G, O177</td>
<td></td>
</tr>
<tr>
<td>Abubureh, H, PB026</td>
<td></td>
</tr>
<tr>
<td>Abum, G, O131*</td>
<td></td>
</tr>
<tr>
<td>Acheb, J, PB063</td>
<td></td>
</tr>
<tr>
<td>Adachi, S, PB001</td>
<td></td>
</tr>
<tr>
<td>Adamekiewicz-Drozyńska, E, PC009, P010</td>
<td></td>
</tr>
<tr>
<td>Adamson, P, O042, P014</td>
<td></td>
</tr>
<tr>
<td>Adorizio, O, P0013</td>
<td></td>
</tr>
<tr>
<td>Advani, S, PB040</td>
<td></td>
</tr>
<tr>
<td>Aerts, L, O142, P010</td>
<td></td>
</tr>
<tr>
<td>Affinita, M, O123</td>
<td></td>
</tr>
<tr>
<td>Afrit, M, PB036</td>
<td></td>
</tr>
<tr>
<td>Aganglia, F, PB023</td>
<td></td>
</tr>
<tr>
<td>Agarwal, B, ICCP008, PK053, PR055, PS029, PB042</td>
<td></td>
</tr>
<tr>
<td>Agarwal, P, PL018</td>
<td></td>
</tr>
<tr>
<td>Agarwal, S, PK002</td>
<td></td>
</tr>
<tr>
<td>Agarwala, S, IPS0018*, IPS0002, IPS0009, IPS0017, IPS0018</td>
<td></td>
</tr>
<tr>
<td>Agbhuiwhe, H, O055*</td>
<td></td>
</tr>
<tr>
<td>Aggarwal, B, PR049</td>
<td></td>
</tr>
<tr>
<td>Agnetoni, V, O047</td>
<td></td>
</tr>
<tr>
<td>Aggarre-Salas, L, PM014</td>
<td></td>
</tr>
<tr>
<td>Abchouc, M, PM027</td>
<td></td>
</tr>
<tr>
<td>Ahem, C, O042</td>
<td></td>
</tr>
<tr>
<td>Ahem, V, O088*</td>
<td></td>
</tr>
<tr>
<td>Ahlawat, J, PB046</td>
<td></td>
</tr>
<tr>
<td>Ahn, H, PA017, PL021, PQ023</td>
<td></td>
</tr>
<tr>
<td>Aitalev, M, PB062</td>
<td></td>
</tr>
<tr>
<td>Aitken, J, O132, PK003, PK022</td>
<td></td>
</tr>
<tr>
<td>Aicca Caglar, A, PQQ22</td>
<td></td>
</tr>
<tr>
<td>Aki, H, PB029</td>
<td></td>
</tr>
<tr>
<td>Aki, F, PK006, PK012</td>
<td></td>
</tr>
<tr>
<td>Akinci, L, O121</td>
<td></td>
</tr>
<tr>
<td>Akiko, T, PU023</td>
<td></td>
</tr>
<tr>
<td>Aksoy, B, PK006</td>
<td></td>
</tr>
<tr>
<td>Akkas, S, PK007*, PK002, PK008</td>
<td></td>
</tr>
<tr>
<td>Akvay, C, PL013, PL016, PB005</td>
<td></td>
</tr>
<tr>
<td>Al Sayer, M, PB008</td>
<td></td>
</tr>
<tr>
<td>Al alhamri, A, PK016*</td>
<td></td>
</tr>
<tr>
<td>Al-almari, A, PA003</td>
<td></td>
</tr>
<tr>
<td>Al-adelbash, M, PR070</td>
<td></td>
</tr>
<tr>
<td>Al-fawaz, I, PL005</td>
<td></td>
</tr>
<tr>
<td>Al-hikni, M, PM016</td>
<td></td>
</tr>
<tr>
<td>Al-hussain, M, PM043</td>
<td></td>
</tr>
<tr>
<td>Al-jefti, A, PK003, PK016</td>
<td></td>
</tr>
<tr>
<td>Al-juma, M, PB043*</td>
<td></td>
</tr>
<tr>
<td>Al-mahr, M, PN003</td>
<td></td>
</tr>
<tr>
<td>Al-jumaily, U, PM043*</td>
<td></td>
</tr>
<tr>
<td>Al-jefti, A, PN003, PN016</td>
<td></td>
</tr>
<tr>
<td>Al-Hussaini, M, PM043*</td>
<td></td>
</tr>
<tr>
<td>Al-Fawaz, I, PL005</td>
<td></td>
</tr>
<tr>
<td>Al-Ahmadi, A, PN003</td>
<td></td>
</tr>
<tr>
<td>Al-Ahmari, A, PK017*</td>
<td></td>
</tr>
<tr>
<td>Akyüz, C, PL013, PL016, Pub005</td>
<td></td>
</tr>
<tr>
<td>Akiko, T, PU023</td>
<td></td>
</tr>
<tr>
<td>Akca Caglar, A, PQ022</td>
<td></td>
</tr>
<tr>
<td>Ahn, H, PA017, PL021, PQ023</td>
<td></td>
</tr>
<tr>
<td>Altrawah, S, PA018*, PM010</td>
<td></td>
</tr>
<tr>
<td>Arentsen-Peters, S, PA021</td>
<td></td>
</tr>
<tr>
<td>Antemucci, A, PK005</td>
<td></td>
</tr>
<tr>
<td>Antillon, F, PK007</td>
<td></td>
</tr>
<tr>
<td>Antillon, F, O100</td>
<td></td>
</tr>
<tr>
<td>Apak, H, PR054, PR069, PR068</td>
<td></td>
</tr>
<tr>
<td>Apbal, S, PB012</td>
<td></td>
</tr>
<tr>
<td>Aplenc, R, PR066</td>
<td></td>
</tr>
<tr>
<td>Arad, A, PQ019</td>
<td></td>
</tr>
<tr>
<td>Araham, I, PM027</td>
<td></td>
</tr>
<tr>
<td>Arancibia, A, PA023*, PB018*, PB020*</td>
<td></td>
</tr>
<tr>
<td>Arava, S, PB008</td>
<td></td>
</tr>
<tr>
<td>Areceu, G, O077</td>
<td></td>
</tr>
<tr>
<td>Areki, R, O046</td>
<td></td>
</tr>
<tr>
<td>Arents-Peters-Stern, S, O121</td>
<td></td>
</tr>
<tr>
<td>Arguello, S, PK004</td>
<td></td>
</tr>
<tr>
<td>Arias, D, PB006</td>
<td></td>
</tr>
<tr>
<td>Arizitiel, PB006*</td>
<td></td>
</tr>
<tr>
<td>Harjmandi rafsanjani, K, PM028*</td>
<td></td>
</tr>
<tr>
<td>Arletta, A, O045*</td>
<td></td>
</tr>
<tr>
<td>Armaoema-Ehunghe, S, IPS0005</td>
<td></td>
</tr>
<tr>
<td>Armstrong, G, O025</td>
<td></td>
</tr>
<tr>
<td>Aroscon, D, IPS0013*, O0170</td>
<td></td>
</tr>
<tr>
<td>Arora, B, O016, O170, PB015, PC010, PD011, PQ018, PR060, Pub017, Pub018</td>
<td></td>
</tr>
<tr>
<td>Arora, M, IPS002, IPS009</td>
<td></td>
</tr>
<tr>
<td>Arora, R, O136*</td>
<td></td>
</tr>
<tr>
<td>Artetia, M, PA006*</td>
<td></td>
</tr>
<tr>
<td>Arsl, G, IPS0007</td>
<td></td>
</tr>
<tr>
<td>Asari, D, O159, P0107</td>
<td></td>
</tr>
<tr>
<td>Ash, S, PL004*, O083</td>
<td></td>
</tr>
<tr>
<td>Ashley, D, O1014</td>
<td></td>
</tr>
<tr>
<td>Ashraf, K, PM065*</td>
<td></td>
</tr>
<tr>
<td>Askins, M, O049, O151</td>
<td></td>
</tr>
<tr>
<td>Aser, J, O023, O151, PM005, PM036</td>
<td></td>
</tr>
<tr>
<td>Atnyeh, E, O068</td>
<td></td>
</tr>
<tr>
<td>Aukena, E, PK002</td>
<td></td>
</tr>
<tr>
<td>Aung, L, PK011, PL020, P0114</td>
<td></td>
</tr>
<tr>
<td>Auvignon, A, PB007</td>
<td></td>
</tr>
<tr>
<td>Avci, S, O087</td>
<td></td>
</tr>
<tr>
<td>Avellan, R, O028</td>
<td></td>
</tr>
<tr>
<td>Aversa, L, PC033, PC012</td>
<td></td>
</tr>
<tr>
<td>Avila, L, O119</td>
<td></td>
</tr>
<tr>
<td>Avila, M, PM042</td>
<td></td>
</tr>
<tr>
<td>Ayad, M, PA010, PB006, PB067</td>
<td></td>
</tr>
<tr>
<td>Ayhan, J, PK006, PK012, PB023</td>
<td></td>
</tr>
<tr>
<td>Ayas, M, PN003*, PK006, PK007, PL005, PN016</td>
<td></td>
</tr>
<tr>
<td>Aydin, B, PL016</td>
<td></td>
</tr>
<tr>
<td>Ayello, J, PK001*, PA007</td>
<td></td>
</tr>
<tr>
<td>Aysha, J, PA019</td>
<td></td>
</tr>
<tr>
<td>Azizi, A, PM002</td>
<td></td>
</tr>
<tr>
<td>Aznar, M, PM004</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>BAKHSHI, S, O124*, O169*</td>
</tr>
<tr>
<td>BELAIAD, I, PR004</td>
<td></td>
</tr>
<tr>
<td>BEND, E, PK010*</td>
<td></td>
</tr>
<tr>
<td>BRUN, M, PM011*</td>
<td></td>
</tr>
<tr>
<td>BUTKOVIC, D, PK018*</td>
<td></td>
</tr>
<tr>
<td>BUTT, Z, O152</td>
<td></td>
</tr>
<tr>
<td>Baade, P, O132, PK003, PK022</td>
<td></td>
</tr>
<tr>
<td>Babayan, S, PM030*</td>
<td></td>
</tr>
<tr>
<td>Bacay, M, PK021</td>
<td></td>
</tr>
<tr>
<td>Bader, P, PK012</td>
<td></td>
</tr>
<tr>
<td>Badowska, W, PK022, PB017, PB019</td>
<td></td>
</tr>
<tr>
<td>Baek, H, O079, PN013</td>
<td></td>
</tr>
<tr>
<td>Baer, F, PC004, PC013</td>
<td></td>
</tr>
<tr>
<td>Baggott, C, O034</td>
<td></td>
</tr>
<tr>
<td>Bahar, A, O002</td>
<td></td>
</tr>
<tr>
<td>Bahig, H, PX001</td>
<td></td>
</tr>
<tr>
<td>Bahouh, G, PM028</td>
<td></td>
</tr>
<tr>
<td>Bailey, S, PM040*, PB006*</td>
<td></td>
</tr>
<tr>
<td>Bailey, J, PK059</td>
<td></td>
</tr>
<tr>
<td>Baiakozova, D, PA014*, PB062*</td>
<td></td>
</tr>
<tr>
<td>Bajai, P, PD014*</td>
<td></td>
</tr>
<tr>
<td>Bajagi, M, IPS0002, IPS0009, IPS0017, IPS0018, IPS0019</td>
<td></td>
</tr>
<tr>
<td>Baka, M, PB010*, PB011*</td>
<td></td>
</tr>
<tr>
<td>Baker, D, O053</td>
<td></td>
</tr>
<tr>
<td>Baker, K, PK014</td>
<td></td>
</tr>
<tr>
<td>Bakshi, S, IPS0002, IPS0009, IPS0018, IPS0019, O164, O165</td>
<td></td>
</tr>
<tr>
<td>Bakshi, A, O161, PD011</td>
<td></td>
</tr>
<tr>
<td>Bakshi, S, PK002</td>
<td></td>
</tr>
<tr>
<td>Balcerzka, A, PB017, PC009, PK009, P0109, PQ010, PQ017</td>
<td></td>
</tr>
<tr>
<td>Balagamb, B, PB016</td>
<td></td>
</tr>
<tr>
<td>Balkaya, E, PA021, PK014</td>
<td></td>
</tr>
<tr>
<td>Ballesteros, J, P0013</td>
<td></td>
</tr>
<tr>
<td>Balayati, M, PM001*</td>
<td></td>
</tr>
<tr>
<td>Balwierz, W, PB017*, PK023*, O103, PA002, PB019, P0160, P0170</td>
<td></td>
</tr>
<tr>
<td>Ban, J, O015</td>
<td></td>
</tr>
<tr>
<td>Banac, S, PK005</td>
<td></td>
</tr>
<tr>
<td>Banavali, S, PA005*, O161, O170, PC010, PD011, P0140, PR060, PB053, PB017</td>
<td></td>
</tr>
<tr>
<td>Branch, F, PB006</td>
<td></td>
</tr>
<tr>
<td>Banda, K, PM040, PB006</td>
<td></td>
</tr>
<tr>
<td>Bandopadhyay, P, PB024*, PK017*</td>
<td></td>
</tr>
<tr>
<td>Bank, I, PB008*</td>
<td></td>
</tr>
<tr>
<td>Bansa, D, PK003, PK016, PB044, PB046</td>
<td></td>
</tr>
<tr>
<td>Bansa, S, PB040</td>
<td></td>
</tr>
<tr>
<td>Bar-Sever, Z, O102</td>
<td></td>
</tr>
<tr>
<td>Barbaric, D, PN007</td>
<td></td>
</tr>
<tr>
<td>Barbashova, A, PC006*</td>
<td></td>
</tr>
<tr>
<td>Barbara, T, PB012*, PB022</td>
<td></td>
</tr>
<tr>
<td>Barfchin, S, PM007</td>
<td></td>
</tr>
<tr>
<td>Barfchi, B, PK011, PB017, PB019</td>
<td></td>
</tr>
<tr>
<td>Barreto, A, PM003, PM004</td>
<td></td>
</tr>
<tr>
<td>Barroso, A, PM005</td>
<td></td>
</tr>
<tr>
<td>Barros, H, PB051</td>
<td></td>
</tr>
</tbody>
</table>